Fast, Effective BVH Updates for Dynamic Ray-Traced Scenes sing Tree Rotations

نویسندگان

  • Daniel Kopta
  • Andrew Kensler
  • Thiago Ize
  • Josef Spjut
  • Erik Brunvand
  • Al Davis
چکیده

Bounding volume hierarchies are a popular choice for ray tracing animated scenes due to the relative simplicity of refitting bounding volumes around moving geometry. However, the quality of such a refitted tree can degrade rapidly if objects in the scene deform or rearrange significantly as the animation progresses, resulting in dramatic increases in rendering times. Existing solutions involve occasional or heuristically triggered rebuilds of the BVH to reduce this effect. In this work, we describe how to efficiently extend refitting with local restructuring operations called tree rotations which can mitigate the effects that moving primitives have on BVH quality by rearranging nodes in the tree during each refit rather than triggering a full rebuild. The result is a fast, lightweight, incremental update algorithm that requires negligible memory, has minor update times and parallelizes easily, yet avoids significant degradation in tree quality or the need for rebuilding while maintaining fast rendering times. We show that our method approaches or exceeds the frame rates of other techniques and is consistently among the best options regardless of the animation scene. CR Categories: I.3.7 [Computer Graphics]: Three-Dimensional Graphics and Realism—Ray Tracing;

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fast, Effective BVH Updates for Dynamic Ray-Traced Scenes Using Tree Rotations

Bounding volume hierarchies are a popular choice for ray tracing animated scenes due to the relative simplicity of refitting bounding volumes around moving geometry. However, the quality of such a refitted tree can degrade rapidly if objects in the scene deform or rearrange significantly as the animation progresses, resulting in dramatic increases in rendering times. Existing solutions involve ...

متن کامل

Asynchronous BVH Construction for Ray Tracing Dynamic Scenes

Recent developments have produced several techniques for interactive ray tracing of dynamic scenes. In particular, bounding volume hierarchies (BVHs) are efficient acceleration structures that handle complex triangle distributions and can accommodate deformable scenes by updating (refitting) the bounding primitive without restructuring the entire tree. Unfortunately, updating only the bounding ...

متن کامل

Fast Insertion-Based Optimization of Bounding Volume Hierarchies

We present an algorithm for fast optimization of bounding volume hierarchies (BVH) for efficient ray tracing. We perform selective updates of the hierarchy driven by the cost model derived from the surface area heuristic. In each step the algorithm updates a fraction of the hierarchy nodes in order to minimize the overall hierarchy cost. The updates are realized by simple operations on the tree...

متن کامل

Fast, parallel, and asynchronous construction of BVHs for ray tracing animated scenes

Recent developments have produced several techniques for interactive ray tracing of dynamic scenes. In particular, bounding volume hierarchies (BVHs) are efficient acceleration structures that handle complex triangle distributions and can accommodate deformable scenes by updating (refitting) the bounding primitive without restructuring the entire tree. Unfortunately, updating only the bounding ...

متن کامل

GPU-based Ray Tracing of Dynamic Scenes

This paper presents the design and implementation of a GPU-based ray tracing system for dynamic scenes consisting of a set of individual, non-deformable objects. The triangles of each object are organized in a separate Kd-tree. A bounding volume hierarchy (BVH) is built on top of these Kd-trees. The BVH is updated and uploaded into GPU memory on a frame-by-frame basis, whereas the Kd-trees are ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011